9.6 Examining the Initial Basic Feasible Solution for Non-Degeneracy

Examine the initial basic feasible solution for non-degeneracy. If it is said to be nondegenerate then it has the following two properties

- Initial basic feasible solution must contain exactly m + n 1 number of individual allocations.
- These allocations must be in independent positions

Independent Positions

Non-Independent Positions

9.7 <u>Transportation Algorithm for Minimization Problem (MODI Method)</u>

Step 1

Construct the transportation table entering the origin capacities a_i , the destination requirement b_j and the cost c_{ij}

Step 2

Find an initial basic feasible solution by vogel's method or by any of the given method.

Step 3

For all the basic variables x_{ij} , solve the system of equations $u_i + v_j = c_{ij}$, for all i, j for which cell (i, j) is in the basis, starting initially with some $u_i = 0$, calculate the values of u_i and v_j on the transportation table

Step 4

Compute the cost differences $d_{ij} = c_{ij} - (u_i + v_j)$ for all the non-basic cells

Step 5

Apply optimality test by examining the sign of each dij

- $\bullet \quad \text{If all $d_{ij} \geq 0$, the current basic feasible solution is optimal} \\$
- If at least one $d_{ij} < 0$, select the variable x_{rs} (most negative) to enter the basis.
- Solution under test is not optimal if any d_{ij} is negative and further improvement is required by repeating the above process.

Step 6

Let the variable x_{rs} enter the basis. Allocate an unknown quantity Θ to the cell (r, s). Then construct a loop that starts and ends at the cell (r, s) and connects some of the basic cells. The amount Θ is added to and subtracted from the transition cells of the loop in such a manner that the availabilities and requirements remain satisfied.

Step 7

Assign the largest possible value to the Θ in such a way that the value of at least one basic variable becomes zero and the other basic variables remain non-negative. The basic cell whose allocation has been made zero will leave the basis.

Step 8 Now, return to step 3 and repeat the process until an optimal solution is obtained.

Example

Find an optimal solution

	\mathbf{W}_1	W_2	W_3	W_4	Availability
F_1	19	30	50	10	7
F_2	70	30	40	60	9
F_3	40	8	70	20	18
Requirement	5	8	7	14	•

Solution

1. Applying vogel's approximation method for finding the initial basic feasible solution

	\mathbf{W}_1	W_2	W_3	W_4	Availability	Penalty
\mathbf{F}_1	5 (19)	(30)	(50)	2 (10)	х	Χ
F_2	(70)	(30)	7(40)	2 (60)	Х	Χ
F_3	(40)	8 (8)	(70)	10 (20)	Х	Χ
Requirement	Х	Х	Х	Х	l	
Penalty	Χ	Χ	Χ	Χ		

Minimum transportation cost is 5(19) + 2(10) + 7(40) + 2(60) + 8(8) + 10(20) = 779

2. Check for Non-degeneracy

The initial basic feasible solution has m + n - 1 i.e. 3 + 4 - 1 = 6 allocations in independent positions. Hence optimality test is satisfied.

3. Calculation of u_i and v_i : - $u_i + v_i = c_{ij}$

					u_i
	• (19)			• (10)	$u_1 = -10$
			• (40)	• (60)	$u_2 = 40$
		• (8)		• (20)	$u_3 = 0$
$\mathbf{v}_{\mathbf{j}}$	$v_1 = 29$	$v_2 = 8$	$v_3 = 0$	$v_4 = 20$	l

Assign a 'u' value to zero. (Convenient rule is to select the ui, which has the largest number of allocations in its row)

Let $u_3 = 0$, then

 $u_3 + v_4 = 20$ which implies $0 + v_4 = 20$, so $v_4 = 20$

 $u_2 + v_4 = 60$ which implies $u_2 + 20 = 60$, so $u_2 = 40$

 $u_1 + v_4 = 10$ which implies $u_1 + 20 = 10$, so $u_1 = -10$

 $u_2 + v_3 = 40$ which implies $40 + v_3 = 40$, so $v_3 = 0$

 $u_3 + v_2 = 8$ which implies $0 + v_2 = 8$, so $v_2 = 8$

 $u_1 + v_1 = 19$ which implies $-10 + v_1 = 19$, so $v_1 = 29$

4. Calculation of cost differences for non basic cells $d_{ij} = c_{ij} - (u_i + v_j)$

c_{ij}					
•	(30)	(50)	•		
(70)	(30)	•	•		
(40)	•	(70)	•		

$u_i + v_j$				
•	-2	-10	•	
69	48	•	•	
29	•	0	•	

$$d_{ij} = c_{ij} - (u_i + v_j)$$

•	32	60	•
1	-18	•	•
11	•	70	•

5. Optimality test

$$d_{ij} < 0$$
 i.e. $d_{22} = -18$

so x_{22} is entering the basis

6. Construction of loop and allocation of unknown quantity Θ

5		2
	+0	7 2-θ
	8-0	10 + e

We allocate Θ to the cell (2, 2). Reallocation is done by transferring the maximum possible amount Θ in the marked cell. The value of Θ is obtained by equating to zero to the corners of the closed loop. i.e. $min(8-\Theta, 2-\Theta) = 0$ which gives $\Theta = 2$. Therefore x_{24} is outgoing as it becomes zero.

5 (19)			2 (10)
	2 (30)	7 (40)	
	6 (8)		12 (20)

Minimum transportation cost is 5(19) + 2(10) + 2(30) + 7(40) + 6(8) + 12(20) = 743

7. Improved Solution

				u_i
• (19)			• (10)	$u_1 = -10$
	• (30)	• (40)		$u_2 = 22$
	• (8)		• (20)	$u_3 = 0$
$v_1 = 29$	$v_2 = 8$	$v_3 = 18$	$v_4 = 20$	1

 $v_1 = 29$ $v_2 = 8$ $v_3 = 18$ $v_4 = 20$

 $\begin{array}{c|cccc} & c_{ij} & & \\ \hline \bullet & (30) & (50) & \bullet \\ \hline (70) & \bullet & \bullet & (60) \\ \hline (40) & \bullet & (70) & \bullet \\ \hline \end{array}$

$\mathbf{u_i} + \mathbf{v_j}$					
•	-2	8	•		
51	•	•	42		
29	•	18	•		

$d_{ij} = c_{ij} - (u_i + v_j)$					
•	32	42	•		
19	•	•	18		
11	•	52	•		

Since $d_{ij} > 0$, an optimal solution is obtained with minimal cost 743

Solved problem

Is $x_{13} = 50$, $x_{14} = 20$, $x_{21} = 55$, $x_{31} = 30$, $x_{32} = 35$, $x_{34} = 25$ an optimal solution to the transportation problem.

					Available
	6	1	9	3	70
From	11	5	2	8	55
	10	12	4	7	90
Required	85	35	50	45	•

Solution

Available 50(9) 20(3) Χ From 55(11) Χ 25(7) 30(10) Χ 35(12) Required Χ Χ Χ Χ

Minimum transportation cost is 50 (9) + 20 (3) + 55 (11) + 30 (10) + 35 (12) + 25 (7)=2010

Check for Non-degeneracy

The initial basic feasible solution has m + n - 1 i.e. 3 + 4 - 1 = 6 allocations in independent positions. Hence optimality test is satisfied.

Calculation of u_i and v_j : - $u_i + v_j = c_{ij}$

Calculation of cost differences for non-basic cells $d_{ij} = c_{ij} - (u_i + v_j)$

 cij

 6
 1
 •
 •

 •
 5
 2
 8

 •
 4
 •

$u_i + v_j$						
6	8	•	•			
•	13	14	8			
•	•	13	•			

$$\mathbf{d}_{ij} = \mathbf{c}_{ij} - (\mathbf{u}_i + \mathbf{v}_j)$$

0	-7	•	•
•	-8	-12	0
•	•	-9	•

Optimality test

 $d_{ij} < 0$ i.e. $d_{23} = -12$ is most negative

So x_{23} is entering the basis

Construction of loop and allocation of unknown quantity Θ

 $min(50-\Theta, 55-\Theta, 25-\Theta) = 25$ which gives $\Theta = 25$. Therefore x_{34} is outgoing as it becomes zero.

		25(9)	45(3)
30(11)		25(2)	
55(10)	35(12)		

Minimum transportation cost is 25 (9) + 45 (3) + 30 (11) + 25 (2) + 55 (10) + 35 (12) = 1710

II iteration

Calculation of u_i and v_j : - $u_i + v_j = c_{ij}$

Calculation of cost differences for non-basic cells $d_{ij} = c_{ij} - (\ u_i + v_j\)$

$\mathbf{c}_{\mathbf{i}\mathbf{j}}$						
6	1	•	•			
•	5	•	8			
•	•	4	7			

$$\mathbf{d}_{ij} = \mathbf{c}_{ij} - (\mathbf{u}_i + \mathbf{v}_j)$$

$$-12 \quad -19 \qquad \bullet \qquad \bullet$$

$$-8 \quad \bullet \qquad 12$$

$$\bullet \qquad \bullet \qquad 3 \qquad 12$$

Optimality test

 $d_{ij} \le 0$ i.e. $d_{12} = -19$ is most negative

So x_{12} is entering the basis

Construction of loop and allocation of unknown quantity $\boldsymbol{\Theta}$

 $min(25-\Theta, 30-\Theta, 35-\Theta) = 25$ which gives $\Theta = 25$. Therefore x_{13} is outgoing as it becomes zero.

	25(1)		45(3)
5(11)		50(2)	
80(10)	10(12)		

Minimum transportation cost is 25(1) + 45(3) + 5(11) + 50(2) + 80(10) + 10(12) = 1235

III Iteration

Calculation of u_i and v_j : - $u_i + v_j = c_{ij}$

					$\mathbf{u_i}$
		• (1)		• (3)	$u_1 = -11$
	• (11)		• (2)		$u_2 = 1$
	• (10)	• (12)			$u_3 = 0$
$\mathbf{v}_{\mathbf{j}}$	$v_1 = 10$	$v_2 = 12$	$v_3 = 1$	$v_4 = 14$	

Calculation of cost differences for non-basic cells d_{ij} = c_{ij} – ($u_i + v_j$)

$\mathbf{c}_{\mathbf{i}\mathbf{j}}$					
6	•	9	•		
•	5	•	8		
•	•	4	7		

$\mathbf{u_i} + \mathbf{v_j}$					
-1	•	-10	•		
•	13	•	15		
•	•	1	14		

$$\mathbf{d_{ij}} = \mathbf{c_{ij}} - (\mathbf{u_i} + \mathbf{v_j})$$

$$7 \qquad \bullet \qquad 19 \qquad \bullet$$

$$\bullet \qquad -8 \qquad \bullet \qquad -7$$

$$\bullet \qquad \qquad 3 \qquad \qquad -7$$

Optimality test

 $d_{ij} < 0$ i.e. $d_{22} = -8$ is most negative So x_{22} is entering the basis

Construction of loop and allocation of unknown quantity $\boldsymbol{\Theta}$

	•	88	•
5-0	\$ 9	•	
80 + e	¥ 10 − θ		

 $min(5-\Theta, 10-\Theta) = 5$ which gives $\Theta = 5$. Therefore x_{21} is outgoing as it becomes zero.

	25(1)		45(3)
	5(5)	50(2)	
85(10)	5(12)		

Minimum transportation cost is 25(1) + 45(3) + 5(5) + 50(2) + 85(10) + 5(12) = 1195

IV Iteration

 $Calculation \ of \ u_i \ and \ v_j : \text{-} \ \ u_i + v_j \ = c_{ij}$

					u_i
		• (1)		• (3)	$u_1 = -11$
		• (5)	• (2)		$u_2 = -7$
	• (10)	• (12)			$u_3 = 0$
$\mathbf{v}_{\mathbf{j}}$	$v_1 = 10$	$v_2 = 12$	$v_3 = 9$	$v_4 = 14$	<u> </u>

Calculation of cost differences for non-basic cells $d_{ij} = c_{ij} - (\ u_i + v_j\)$

$c_{ m ij}$					
6	•	9	•		
11	•	•	8		
•	•	4	7		

$u_i + v_j$					
-1	•	-2	•		
3	•	•	7		
•	•	9	14		

$\mathbf{d}_{ij} = \mathbf{c}_{ij} - (\mathbf{u}_i + \mathbf{v}_j)$					
7	•	11	•		
8	•	•	1		
•	•	-5	-7		

Optimality test

 $d_{ij} \le 0$ i.e. $d_{34} = -7$ is most negative

So x_{34} is entering the basis

Construction of loop and allocation of unknown quantity $\boldsymbol{\Theta}$

 $min(5-\Theta, 45-\Theta) = 5$ which gives $\Theta = 5$. Therefore x_{32} is outgoing as it becomes zero.

	30(1)		40(3)
	5(5)	50(2)	
85(10)			5(7)

Minimum transportation cost is 30(1) + 40(3) + 5(5) + 50(2) + 85(10) + 5(7) = 1160

V Iteration

Calculation of u_i and v_j : - $u_i + v_j = c_{ij}$

					u_i
		• (1)		• (3)	
		• (5)	• (2)		$u_2 = 0$
	• (10)			• (7)	$u_3 = 0$
Vj	$v_1 = 10$	$v_2 = 5$	$v_3 = 2$	$v_4 = 7$	_

Calculation of cost differences for non-basic cells d_{ij} = c_{ij} – ($u_i + v_j$)

$u_i + v_j$					
6	•	-2	•		
10	•	•	7		
•	5	2	•		

 $\mathbf{d}_{ij} = \mathbf{c}_{ij} - (\mathbf{u}_i + \mathbf{v}_j)$

0	•	11	•
1	•	•	1
•	7	2	•

Since $d_{ij} > 0$, an optimal solution is obtained with minimal cost 1160. Further more $d_{11} = 0$ which indicates that alternative optimal solution also exists.

Exercise

I- Determine an initial basic feasible solution to the following transportation problems using the five given methods.

1.

From

Requirement

	To				Availability
2	11	10	3	7	4
1	4	7	2	1	8
3	9	4	8	12	9
3	3	4	5	6	•

2.

	D_1	D_2	D_3	D_4	Availability
S_1	11	13	17	14	250
S_2	16	18	14	10	300
S_3	21	24	13	10	400
Requirement	200	225	275	250	I

Industrial Engineering		Dr.Basil Aljo	rani Mec	Mech. Eng. Dept.		الهندسة الصناعية	
3.							
		I	II	III	IV	Supply	
	A	13	11	15	20	2000	
From	В	17	14	12	13	6000	
	C	18	18	15	12	7000	
	Demand	3000	3000	4000	5000	_	

II- Determine the optimal solution of the above transportation problems.

III- Determine the optimal solution of the given transportation problem:

		T	o'		Supply
	2	3	11	7	6
From	1	0	6	1	1
	5	8	15	10	10
Demand	7	5	3	2	17